01204211 Discrete Mathematics
 Lecture 8b: Vectors

Jittat Fakcharoenphol

August 29, 2022

What is a vector?

You can think of a vector as an "ordered" list of elements (which are typically numbers). For example:

- $[1,2,5,20]$
- $[0,0,1,1,0,0,0,1]$

You can also view a vector as a function, e.g., you can view $\boldsymbol{u}=[1,2,5,20]$ as a function \boldsymbol{u} that maps

$$
0 \mapsto 1, \quad 1 \mapsto 2, \quad 2 \mapsto 5, \quad 3 \mapsto 20
$$

Each element in the vector is typically a real number (\mathbb{R}), but can be an element from other sets with appropriate property (more on this later).

Remark: Mathematically, a vector is an element of a vector space. We will understand this more later.

What can be represented as a vector?

Viewing vectors: vectors in \mathbb{R}^{2}

Viewing vectors: vectors in \mathbb{R}^{3}

n-vectors over \mathbb{R}

- We mostly deal with vectors with finite number of elements.
- This is a 4 -vector: $[10,20,500,4]$.
- We sometimes also write it as a column vector:

$$
\left[\begin{array}{c}
10 \\
20 \\
500 \\
4
\end{array}\right]
$$

- When every element of a vector is from some set, we say that it is a vector over that set. For example, $[10,20,500,4]$ is a 4 -vector over \mathbb{R}.

Vector operations

- As discussed in the previous slides, when working with a system of linear equations, we mostly deals with linear combinations of vectors.
- We will look at the operations we do to vectors to obtain their linear combinations.
- The operations are:
- Vector additions
- Scalar multiplications
- These operations motivate the definition of vector spaces.

Vector additions

Given two n-vectors

$$
\boldsymbol{u}=\left[u_{1}, u_{2}, \ldots, u_{n}\right]
$$

and

$$
\boldsymbol{v}=\left[v_{1}, v_{2}, \ldots, v_{n}\right]
$$

we have that

$$
\boldsymbol{u}+\boldsymbol{v}=\left[u_{1}+v_{1}, u_{2}+v_{2}, \ldots, u_{n}+v_{n}\right]
$$

Vector additions, in picture

Zero vectors

A zero n-vector $\mathbf{0}=[0,0, \ldots, 0]$ is an additive identity, i.e., for any vector \boldsymbol{u},

$$
\mathbf{0}+\boldsymbol{u}=\boldsymbol{u}+\mathbf{0}=\boldsymbol{u}
$$

Scalar multiplications

For a vector over \mathbb{R}, we refer to an element α in \mathbb{R} as a scalar. For an n-vector

$$
\boldsymbol{u}=\left[u_{1}, u_{2}, \ldots, u_{n}\right],
$$

we have that

$$
\alpha \cdot \boldsymbol{u}=\left[\alpha \cdot u_{1}, \alpha \cdot u_{2}, \ldots, \alpha \cdot u_{n}\right],
$$

Scalar multiplications, in pictures

Linear combinations

For any scalar

$$
\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}
$$

and vectors

$$
\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{m}
$$

we say that

$$
\alpha_{1} \boldsymbol{u}_{1}+\alpha_{2} \boldsymbol{u}_{2}+\cdots+\alpha_{m} \boldsymbol{u}_{m}
$$

is a linear combination of $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{m}$.

Examples:

A linear system with 3 variables

Give the following linear system.

$$
\begin{aligned}
2 x_{1}+4 x_{2}+3 x_{3} & =7 \\
x_{1}+5 x_{3} & =12 \\
4 x_{1}+2 x_{2}+3 x_{3} & =10
\end{aligned}
$$

If we rewrite the system as

$$
\left[\begin{array}{l}
2 \\
1 \\
4
\end{array}\right] \cdot x_{1}+\left[\begin{array}{l}
4 \\
0 \\
2
\end{array}\right] \cdot x_{2}+\left[\begin{array}{l}
3 \\
5 \\
3
\end{array}\right] \cdot x_{3}+=\left[\begin{array}{c}
7 \\
12 \\
10
\end{array}\right]
$$

This becomes the problem of expressing a vector as linear combination of other vectors. I.e., given vectors

$$
\boldsymbol{u}_{1}=[2,1,4], \quad \boldsymbol{u}_{2}=[4,0,2], \quad \boldsymbol{u}_{3}=[3,5,3]
$$

we would like to find coefficients x_{1}, x_{2}, x_{3} such that

$$
x_{1} \cdot \boldsymbol{u}_{1}+x_{2} \cdot \boldsymbol{u}_{2}+x_{3} \cdot \boldsymbol{u}_{3}=[7,12,10]
$$

Span

A set of all linear combination of vectors $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{m}$ is called the span of that set of vectors.
It is denote by $\operatorname{Span}\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{m}\right\}$.

Examples:

Convex combination

For any scalar

$$
\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}
$$

such that $\alpha_{1}+\alpha_{2}+\ldots+\alpha_{m}=1$ and $\alpha_{i} \geq 0$ for all i, and vectors

$$
\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{m}
$$

we say that

$$
\alpha_{1} \boldsymbol{u}_{1}+\alpha_{2} \boldsymbol{u}_{2}+\cdots+\alpha_{m} \boldsymbol{u}_{m}
$$

is a convex combination of $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{m}$.

Examples:

Elements in a vector

- We see examples of vectors over \mathbb{R}.
- However, elements in a vector can be from other sets with appropriate property. (I.e., they should behave a real numbers.)
- What do we want from an element in a vector?
- We should be able to perform addition, subtraction, multiplication, and division.
- Operations should be commutative and associative.
- Additive and multiplicative identity should exist.
- Addition and multiplication should have inverses.
- We refer to a set with these properties as a field.

A field

A set \mathbb{F} with two operations + and $\times($ or $\cdot)$ is a field iff these operations satisfy the following properties:

- (Associativity): $(a+b)+c=a+(b+c)$ and $(a \cdot b) \cdot c=a \cdot(b \cdot c)$
- (Commutativity): $a+b=b+a$ and $a \cdot b=b \cdot a$
- (Identities): There exist two elements $0 \in \mathbb{F}$ and $1 \in \mathbb{F}$ such that $a+0=a$ and $a \cdot 1=a$
- (Additive inverse): For every element $a \in \mathbb{F}$, there is an element $-a \in \mathbb{F}$ such that $a+(-a)=0$
- (Multiplicative inverse): For every element $a \in \mathbb{F} \backslash\{0\}$, there is an alement a^{-1} such that $a \cdot a^{-1}=1$
- (Distributive): $a \cdot(b+c)=a \cdot b+a \cdot c$

Another useful field: $G F(2)$

$G F(2)=\{0,1\}$. I.e., it is a "bit" field.
What are + and \cdot in $G F(2)$?

- We define $b_{1}+b_{2}$ to be XOR.

$$
\begin{gathered}
0+0=0 \\
0+1=1+0=1 \\
1+1=0
\end{gathered}
$$

- We define $b_{1} \cdot b_{2}$ to be standard multiplication.

$$
\begin{gathered}
0 \cdot 0=0 \cdot 1=1 \cdot 0=0 \\
1 \cdot 1=1
\end{gathered}
$$

You can check that $G F(2)$ satisfies the axioms of fields.

