01204211 Discrete Mathematics
 Lecture 8a: Linear systems of equations

Jittat Fakcharoenphol

August 25, 2022

A linear system of equations

Let's start with a simple example with 2 variables:

$$
\begin{aligned}
5 x+10 y & =5 \\
x-3 y & =11
\end{aligned}
$$

How would you solve it?
Using basic techniques you learned from high school, you may multiply the second equation with 5 and subtract it to the first equation; yielding:

$$
5 x+10 y-(5 x-5 \cdot 3 y)=25 y=5-5 \cdot 11=-50
$$

Then you can conclude that $y=-2$. Substitute it to one of the equation, you can find out the value of x.

A closer look: 1st perspective

Each equation (row) constraints certain values of x and y.

"Combining" two rows

Let's focus only on coefficients. This is how we obtain the third equation:

$$
\left.\begin{array}{l}
\left(\begin{array}{cc}
5, & 10
\end{array}\right)=\boldsymbol{u}_{1} \\
\left(\begin{array}{cc}
1,-3
\end{array}\right)=\boldsymbol{u}_{2} \\
(0,
\end{array}\right)=\boldsymbol{u}_{1}-5 \cdot \boldsymbol{u}_{2}=
$$

The third equation is a "combination" of the other two rows. In fact, it is a linear combination of the first two.
Can you obtain $(0,1)$ from \boldsymbol{u}_{1} and \boldsymbol{u}_{2} ? Yes,

$$
0.2 \cdot \boldsymbol{u}_{1}-\boldsymbol{u}_{2}=(0,1)
$$

It turns out that you can obtain any (a, b) from \boldsymbol{u}_{1} and \boldsymbol{u}_{2}.

A closer look: 2nd perspective

We rewrite the system as

$$
\left[\begin{array}{l}
5 \\
1
\end{array}\right] \cdot x+\left[\begin{array}{c}
10 \\
-3
\end{array}\right] \cdot y=\left[\begin{array}{c}
5 \\
11
\end{array}\right]
$$

Now, the goal is to find x and y satisfying this "vector" equation. But if we change our focus to the vectors, we can see that we have 3 vectors:

$$
\boldsymbol{v}_{1}=\left[\begin{array}{l}
5 \\
1
\end{array}\right], \quad \boldsymbol{v}_{2}=\left[\begin{array}{c}
10 \\
-3
\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{c}
5 \\
11
\end{array}\right]
$$

and with x and y, we now see that \boldsymbol{b} is a linear combination of \boldsymbol{v}_{1} and \boldsymbol{v}_{2}.
Finding x and y is essentially checking if \boldsymbol{b} is a linear combination of \boldsymbol{v}_{1} and \boldsymbol{v}_{2}.

A linear system with 3 variables

Let's consider a system with 3 variables:

$$
\begin{aligned}
2 x_{1}+4 x_{2}+3 x_{3} & =7 \\
x_{1}+5 x_{3} & =12 \\
4 x_{1}+2 x_{2}+3 x_{3} & =10
\end{aligned}
$$

Row perspective

$$
\begin{aligned}
2 x_{1}+4 x_{2}+3 x_{3} & =7 \\
x_{1}+5 x_{3} & =12 \\
4 x_{1}+2 x_{2}+3 x_{3} & =10
\end{aligned}
$$

Each equation becomes a plane in 3 dimensional space.

Row perspective: the goal of Gaussian Elimination

From vectors:

$$
(2,4,3), \quad(1,0,5), \quad(4,2,3)
$$

We want to linearly combine them to obtain

$$
(1,0,0), \quad(0,1,0), \quad(0,0,1)
$$

In other words, what are the possible linear combinations of

$$
(2,4,3), \quad(1,0,5), \quad(4,2,3)
$$

Column perspective

From

$$
\begin{aligned}
2 x_{1}+4 x_{2}+3 x_{3} & =7 \\
x_{1}+5 x_{3} & =12 \\
4 x_{1}+2 x_{2}+3 x_{3} & =10
\end{aligned}
$$

we rewrite the system as

$$
\left[\begin{array}{l}
2 \\
1 \\
4
\end{array}\right] \cdot x_{1}+\left[\begin{array}{l}
4 \\
0 \\
2
\end{array}\right] \cdot x_{2}+\left[\begin{array}{l}
3 \\
5 \\
3
\end{array}\right] \cdot x_{3}+=\left[\begin{array}{c}
7 \\
12 \\
10
\end{array}\right]
$$

Our goal is to find a way to linear combine 3 vectors to obtain

In other words, the vector \boldsymbol{b}, for a successful Gaussian Elimination, should be in the set of all possible linear combinations of the 3 column vectors.

More example

Let's consider another system with 3 variables:

$$
\begin{aligned}
2 x_{1}+4 x_{2}+3 x_{3} & =7 \\
x_{1}+5 x_{3} & =12 \\
3 x_{1}+8 x_{2}+x_{3} & =10
\end{aligned}
$$

More example 2

Let's consider another system with 3 variables:

$$
\begin{aligned}
2 x_{1}+4 x_{2}+3 x_{3} & =7 \\
x_{1}+5 x_{3} & =12 \\
4 x_{1}+2 x_{2}+3 x_{3} & =10 \\
5 x_{1}+2 x_{2}+8 x_{3} & =22
\end{aligned}
$$

More failed example 3

Let's consider the last system with 3 variables:

$$
\begin{aligned}
2 x_{1}+4 x_{2}+3 x_{3} & =7 \\
x_{1}+ & 5 x_{3}
\end{aligned}=12010 x_{3}=24
$$

More failed example 3 (cont.)

The last equation (constraint) can be derived from the other two.

$$
\begin{aligned}
2 x_{1}+4 x_{2}+3 x_{3} & =7 \\
x_{1}+5 x_{3} & =12
\end{aligned}
$$

This system has many solutions. Suppose that $\boldsymbol{u}=\left[u_{1}, u_{2}, u_{3}\right]$ and $\boldsymbol{v}=\left[v_{1}, v_{2}, v_{3}\right]$ are both solutions but $\boldsymbol{u} \neq \boldsymbol{v}$.
What does it mean that \boldsymbol{u} and \boldsymbol{v} are solutions? It means that, for \boldsymbol{u}, you can plug in $x_{1}=u_{1}, x_{2}=u_{2}, x_{3}=u_{3}$ and that satisfies the system of equations.

More failed example 3 (cont. 1)

Suppose that \boldsymbol{u} and \boldsymbol{v} are different solutions to the system:

$$
\begin{aligned}
2 x_{1}+4 x_{2}+3 x_{3} & =7 \\
x_{1}+5 x_{3} & =12
\end{aligned}
$$

I.e.,

$$
\begin{aligned}
2 u_{1}+4 u_{2}+3 u_{3} & =7 \\
5 u_{3} & =12
\end{aligned} \begin{array}{cc}
2 v_{1}+4 v_{2}+3 v_{3} & =7 \\
u_{1}+ &
\end{array}
$$

Consider $\boldsymbol{u}-\boldsymbol{v}$. We see that

$$
\begin{aligned}
& \left(2 u_{1}+4 u_{2}+3 u_{3}\right)-\left(2 v_{1}+4 v_{2}+3 v_{3}\right)= \\
& 2\left(u_{1}-v_{1}\right)+4\left(u_{2}-v_{2}\right)+3\left(u_{3}-v_{3}\right)=(7-7)=0 \\
& \left(u_{1}+5 u_{3}\right)-\left(v_{1}+5 v_{3}\right)= \\
& \quad\left(u_{1}-v_{1}\right)+ \\
& 5\left(u_{1}-v_{3}\right)=(12-12)=0
\end{aligned}
$$

More failed example 3 (cont. 2)

Suppose that \boldsymbol{u} and \boldsymbol{v} are different solutions to the system:

$$
\begin{aligned}
2 x_{1}+4 x_{2}+3 x_{3} & =7 \\
x_{1}+5 x_{3} & =12
\end{aligned}
$$

It turns out that $\boldsymbol{u}-\boldsymbol{v}$ is a solution to the following system:

$$
\begin{array}{r}
2 x_{1}+4 x_{2}+3 x_{3}=0 \\
x_{1}+5 x_{3}=0
\end{array}
$$

It is the same system with all right-hand-side constants equal to zero. This type of linear systems is called a homogeneous system of linear equations.
It would play a central role when dealing with linear systems with many solutions.

Key take away

- There are 2 ways to look at how we solve linear systems: row perspective and column perspective.
- Linear combination is the main operation.

