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The Fibonacci sequence1

Source:

https://en.wikipedia.org/wiki/

File:Fibonacci.jpg

In 1202, Leonardo Bonacci (known as
Fibonacci) asked the following question.

“[A]ssuming that: a newly born pair of rabbits,
one male, one female, are put in a field; rabbits
are able to mate at the age of one month so
that at the end of its second month a female can
produce another pair of rabbits; rabbits never die
and a mating pair always produces one new pair
(one male, one female) every month from the
second month on.”

“The puzzle that Fibonacci posed was: how

many pairs will there be in one year?”

From https://en.wikipedia.org/wiki/Fibonacci number

1This lecture mostly follows Chapter 4 of [LPV].



Let’s try to solve Fibonacci’s question.
Let ♠ denote a newly born rabit pair, and ♥ denote a mature rabit
pair.

Month Rabits

1 ♠ 1
2 ♥ 1
3 ♥ ♠ 2
4 ♥ ♥ ♠ 3
5 ♥ ♥ ♥ ♠ ♠ 5
6 ♥ ♥ ♥ ♥ ♥ ♠ ♠ ♠ 8
7 ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♠ ♠ ♠ ♠ ♠ 13

How many rabit pairs do we have at the beginning of the 8th
month?

I Surely all 13 rabit pairs we have in the 7th month remain there and
are all mature. So, the question is how many newly born rabbit
pairs that we have.

I The number of newly born rabbit pairs equals the number of mature
rabbit pairs we have. This is also equal to the number of rabit pairs
that we have in the 6th month: 8.



Thus, we will have 13+8 rabit pairs at the beginning of the 8th
month.
If we write down the sequence, we get the Fibonacci sequence:

1, 1, 2, 3, 5, 8, 13, 21, . . .

Again, what’s the next number in this sequence? How can you
compute it?
21+13 = 34 is the answer. You take the last two numbers and add
them up to get the next number. Why?



To be precise, let Fn be the n-th number in the Fibonacci
sequence. (That is, F1 = 1, F2 = 1, F3 = 2, F4 = 3 and so on.)
We can define the (n+ 1)-th number as

Fn+1 = Fn + Fn−1,

for n = 2, 3, . . .. Is this enough to completely specify the sequence?
No, because we do not know how to start. To get the Fibonacci
sequence, we need to specify two starting values: F1 = 1 and
F2 = 1 as well.
Now, you can see that the equation and these special values
uniquely determine the sequence. It is also convenient to define
F0 = 0 so that the equation works for n = 1.



A recurrence

The equation
Fn+1 = Fn + Fn−1

and the initial values F0 = 0 and F1 = 1 specify all values of the
Fibonacci sequence. With these two initial values, you can use the
equation to find the value of any number in the sequence.
This definition is called a recurrence. Instead of defining the value
of each number in the sequence explicitly, we do so by using the
values of other numbers in the sequence.



Tilings with 1x1 and 2x1 tiles

You have a walk way of length n units. The width of the walk way
is 1 unit. You have unlimited supplies of 1x1 tiles and 2x1 tiles.
Every tile of the same size is indistinguishable. In how many ways
can you tile the walk way?
Let’s consider small cases.

I When n = 1, there are 1 way.

I When n = 2, there are 2 ways.

I When n = 3, there are 3 ways.

I When n = 4, there are 5 ways.

Let’s define Jn to be the number of ways you can tile a walk way
of length n. From the example above, we know that J1 = 1 and
J2 = 2.
Can you find a formula for general Jn?



Figuring out the recurrence for Jn

To figure out the general formula for Jn, we can think about the
first choice we can make when tiling a walk way of length n. There
are two choices:

I (1) We can start placing a 1x1 tile at the beginning, or

I (2) We can start placing a 2x1 tile at the beginning.

In each of the cases, let’s think about how many ways we can tile
the rest of the walk way, provided that the first step is made.

Note that if we start by placing a 1x1 tile, we are left with a walk
way of length n− 1. From the definition of Jn, we know that there
are Jn−1 ways to tile the rest of the walk way of length n− 1.
Using similar reasoning, we know that if we start with a 2x1 tile,
there are Jn−2 ways to tile the rest of the walk way.



The recurrence for Jn

From the discussion, we have that

Jn = Jn−1 + Jn−2,

where J1 = 1 and J2 = 2.

Note that this is exactly the same recurrence as the Fibonacci
sequence, but with different initial values. In fact, we have that

Jn = Fn+1.



Identities on Fibonacci numbers
There are a lot of identities related to Fibonacci numbers. Let’s
see the first few values in the sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .

Now, let’s add the first few numbers:

0 + 1 = 1

0 + 1 + 1 = 2

0 + 1 + 1 + 2 = 4

0 + 1 + 1 + 2 + 3 = 7

0 + 1 + 1 + 2 + 3 + 5 = 12

0 + 1 + 1 + 2 + 3 + 5 + 8 = 20

0 + 1 + 1 + 2 + 3 + 5 + 8 + 13 = 33

From this we can formulate the following conjecture:

F0 + F1 + · · ·+ Fn = Fn+2 − 1.



Theorem: For n ≥ 0, we have that

F0 + F1 + · · ·+ Fn = Fn+2 − 1.

Proof: We shall prove by induction on n. The base case has
already been demonstrated when we consider small values of n.

Inductive Step: Let’s assume that the statement is true for
n = k, for k ≥ 0, i.e., assume that

F0 + F1 + · · ·+ Fk = Fk+2 − 1.

We shall prove that the statement is true when n = k + 1. This is
not hard to show. We write

(F0 + F1 + · · ·+ Fk) + Fk+1 = (Fk+2 − 1) + Fk+1

= Fk+3 − 1,

as required. Note that the first step follows from the induction
hypothesis. �



Another harder identity

The following identity is harder to prove:

F 2
n + F 2

n−1 = F2n−1.

Let’s try a few values as a sanity check.

F 2
1 + F 2

2 = 12 + 12 = 2 = F3

F 2
2 + F 2

3 = 12 + 22 = 5 = F5

F 2
3 + F 2

4 = 22 + 32 = 13 = F7

To see how hard it is to prove the identity, let’s try to prove it by
induction. (Let’s jump to the inductive step.)



We use strong induction. Assume that the statement is true for
n = k, k − 1, k − 2, . . . , 0. We prove the statement for n = k + 1.

Let’s work on the left hand side.

F 2
k+1 + F 2

k = (Fk + Fk−1)
2 + (Fk−1 + Fk−2)

2

= F 2
k + 2FkFk−1 + F 2

k−1 + F 2
k−1 + 2Fk−1Fk−2 + F 2

k−2

= (F 2
k + F 2

k−1) + 2FkFk−1 + (F 2
k−1 + F 2

k−2) + 2Fk−1Fk−2

= F2k−1 + F2k−3 + 2FkFk−1 + 2Fk−1Fk−2,

where the last step follows from the induction hypothesis.

Note that we end up with the terms like: FkFk−1 +Fk−1Fk−2. We
can keep expanding the terms, but we will end up with the same
cross terms like this.

So, let’s take a look at a few values of this expression. Maybe we
can guess its values.



Let’s plug in a few values:

F3F2 + F2F1 = 2 · 1 + 1 · 1 = 3 = F4

F4F3 + F3F2 = 3 · 2 + 2 · 1 = 8 = F6

F5F4 + F4F3 = 5 · 3 + 3 · 2 = 21 = F8

F6F5 + F5F4 = 8 · 5 + 5 · 3 = 55 = F10

From this, we can make another conjecture:

Conjecture 2:

Fn+1Fn + FnFn−1 = F2n.



Let’s assume that Conjecture 2 is true and see if we can prove the
identity that we want.
Recall that we have

F 2
k+1 + F 2

k = F2k−1 + F2k−3 + 2FkFk−1 + 2Fk−1Fk−2

= F2k−1 + F2k−3 + 2(FkFk−1 + Fk−1Fk−2)

= F2k−1 + F2k−3 + 2F2k−2 (from Conj 2)

= (F2k−1 + F2k−2) + (F2k−2 + F2k−3)

= F2k + F2k−1

= F2k+1,

as required. We use Conjecture 2 to show the second step.

This means that assuming the Conjecture 2, we can show the
identity F 2

n + F 2
n−1 = F2n−1.



Let’s prove Conjecture 2
Conjecture 2: Fn+1Fn + FnFn−1 = F2n.
Proof: Let’s do so by induction. Since we have plugged in many
small values, we can only consider the inductive step now. Assume
that the statement is true for n = k, k − 1, k − 2, . . . , 0. We prove
the statement for n = k + 1.
We write

Fk+2Fk+1 + Fk+1Fk = (Fk+1 + Fk)Fk+1 + (Fk + Fk−1)Fk

= F 2
k+1 + FkFk+1 + F 2

k + Fk−1Fk

= (FkFk+1 + Fk−1Fk) + F 2
k+1 + F 2

k

= F2k + F 2
k+1 + F 2

k .

(Note that the 4th step uses the induction hypothesis.) Do you see
any familiar terms?

Yes, the terms F 2
k+1 + F 2

k is the left hand side of the identity we
have just proven. Actually, we cannot use it directly here, because
we use Conjecture 2 to prove it and now we are trying to prove the
conjecture itself. Using it results in a circular reasoning.



We can actually prove the conjecture using that identity, but we
first have to break our circular reasoning by proving both
statements together. Formally, let’s define predicates P and Q:

P (n) : F 2
n + F 2

n−1 = F2n−1

Q(n) : Fn+1Fn + FnFn−1 = F2n

We will prove that for all integer n ≥ 0, P (n) ∧Q(n).
Base Case: We have shown that P (1) and Q(1) are true.
Inductive Step: Assume that the statements are true for
n = k, k− 1, . . . , 1 for k ≥ 1. We will prove P (k+ 1)∧Q(k+ 1).

I P (k + 1) can be proved as in the proof of the identity
previously.

I To prove Q(k + 1), we can use the induction hypotheses and
also P (k + 1).



Simultaneous induction

Let’s prove Q(k + 1). We can continue from our “broken” proof.
We have that

Fk+2Fk+1 + Fk+1Fk = F2k + (F 2
k+1 + F 2

k )

= F2k + F2k+1 = F2k+2,

as required. Note that the second step uses P (k + 1). �

The technique we use to prove P and Q together is called
simultaneous induction.



An explicit form of the Fibonacci sequence

While the recurrence for Fn completely specifies the sequence, it is
hard to find the value of, say, F20 quickly. We really have to
enumerate the sequence from F0, F1, . . . , to get to F20. Also, with
the definition based on the recurrence, other properties of the
sequcen is unclear (e.g., how fast the sequence grows).
Therefore, it might be useful to find the explicit definition of the
Fibonacci sequence.



Ratios

To get started, we might want to look for a common form of the
function. We can start by looking at the numbers in the sequence.

n Fn ratio Fn/Fn−1
1 1
2 1 1.0000000000
3 2 2.0000000000
4 3 1.5000000000
5 5 1.6666666667
6 8 1.6000000000
7 13 1.6250000000
8 21 1.6153846154
9 34 1.6190476190

10 55 1.6176470588
11 89 1.6181818182
12 144 1.6179775281

n Fn ratio Fn/Fn−1
13 233 1.6180555556
14 377 1.6180257511
15 610 1.6180371353
16 987 1.6180327869
17 1597 1.6180344478
18 2584 1.6180338134
19 4181 1.6180340557
20 6765 1.6180339632
21 10946 1.6180339985
22 17711 1.6180339850
23 28657 1.6180339902
24 46368 1.6180339882



The 1st guess: an

We can see that the ratio between two consecutive Fibonacci
numbers is close to 1.61803. We may guess that the explicit form
for Fn is an exponential function an. (While we know that this is
not true, it may give us hints on the correct function.)

Let’s try to figure out the exact value for a. The value a must
satisfy the recurrence F (n+ 1) = F (n) + F (n− 1), i.e.,

an+1 = an + an−1.

We can try to solve for a. Dividing the equation by an−1, we get

a2 = a+ 1,

i.e., a2 − a− 1 = 0.



Solutions (1)
We can use a standard formula to get the values of a, i.e., a can

be 1+
√
12+4·1·1
2·1 , 1−

√
12+4·1·1
2·1 , or

1+
√
5

2 , 1−
√
5

2 .

These look nice because 1+
√
5

2 ≈ 1.61803.

These solutions give us two candidates for Fn:

g(n) =

(
1 +
√
5

2

)n
,

and

h(n) =

(
1−
√
5

2

)n
,

But we can see that while both g(n) and h(n) satisfy
g(n+ 1) = g(n) + g(n− 1) and h(n+ 1) = h(n) + h(n− 1), they
are not the correct function for Fn. (We can just plug in various
values of n to check.)



Solutions (2)

To get the actual function, we observe that if both g(n) and h(n)
are solutions to our recurrence, then for any α and β,

`(n) = α · g(n) + β · h(n)

is also a solution to the recurrence, because

`(n+ 1) = αg(n+ 1) + βh(n+ 1)

= α(g(n) + g(n− 1)) + β(h(n) + h(n− 1))

= αg(n) + βh(n) + αg(n− 1) + βh(n− 1)

= `(n) + `(n− 1).

This opens another possibility for us, i.e., g(n) and h(n) may be
useful, but we need to find α and β. How?



The 2nd guess
Let `(n) = αg(n) + βh(n). We may use two initial values for Fn
to set up the system of equations:

0 = `(0) = αg(0) + βh(0),

and
1 = `(1) = αg(1) + βh(1).

Plugging in g(0), h(0), g(1), and h(1), we get

α
(
1+
√
5

2

)0
+ β

(
1−
√
5

2

)0
= α+ β = 0,

and

α
(
1+
√
5

2

)1
+ β

(
1−
√
5

2

)1
= α

(
1+
√
5

2

)
+ β

(
1−
√
5

2

)
= 1.

The first equation gives β = −α. Put that in the second equation
to get

α
(
1+
√
5

2

)
− α

(
1−
√
5

2

)
= 2α

√
5

2 = α
√
5 = 1,

implying that α = 1/
√
5 and β = −1/

√
5.



The final solution

Using the obtained α and β, our solution to Fn becomes

1√
5

(
1 +
√
5

2

)n
− 1√

5

(
1−
√
5

2

)n
.

Now, we can check that this is indeed the correct solution to Fn.

Note that 1+
√
5

2 ≈ 1.61803 is the golden ratio. Also observe that

|1−
√
5

2 | ≈ | − 0.61803| < 1; therefore, the term
(
1−
√
5

2

)n
goes to

zero as n goes to infinity. This explains why we only observe only

the ratio 1+
√
5

2 in Fn as n gets large.


