01204211 Discrete Mathematics
 Lecture 17 (extra): Binomial Coefficients (extra)

Jittat Fakcharoenphol

July 10, 2019

The binomial coefficients ${ }^{1}$

In this lecture, we shall study the function $\binom{n}{k}$ itself.
First, let's see the actual value of the binomial coefficients $\binom{n}{k}$ for various values of n.
${ }^{1}$ This lecture mostly follows Chapter 3 of [LPV].

What do you see?

- The function $\binom{n}{}$. is symmetric around $n / 2$.
- Why? This is true because we know that $\binom{n}{k}=\binom{n}{n-k}$.
- The maximum is at the middle, i.e., when n is even the maximum is at $\binom{n}{n / 2}$ and when n is odd, the maximum is at $\binom{n}{\lfloor n / 2\rfloor}$ and $\binom{n}{\lceil n / 2\rceil}$.
- Why? Can we prove that?

Largest in the middle

To understand the behavior of $\binom{n}{k}$ as k changes, let's look at two consecutive values:

$$
\binom{n}{k} \odot\binom{n}{k+1}
$$

Let's write them out:

$$
\frac{n(n-1)(n-2) \cdots(n-k+1)}{k!} \wp \frac{n(n-1)(n-2) \cdots(n-k)}{(k+1) k!} .
$$

Removing common terms, we can see that we are comparing these two terms:

$$
1 \odot \frac{n-k}{k+1} \Leftrightarrow k \odot \frac{n-1}{2},
$$

that is,

- if $k<(n-1) / 2,\binom{n}{k}<\binom{n}{k+1}$; and
- if $k>(n-1) / 2,\binom{n}{k}>\binom{n}{k+1}$.

How large is the middle $\binom{n}{n / 2}$

Here, to simplify the calculation, we shall only consider the case when n is even. Let's try to estimate the value of $\binom{n}{n / 2}$ by finding its upper and lower bounds.
A simple upper bound can be obtain using the fact that $\binom{n}{n / 2}$ counts subsets of certain size:

$$
\binom{n}{n / 2}<2^{n}
$$

We can also get a lower bound by noting that the maximum must be at least the average, i.e.,

$$
\binom{n}{n / 2} \geq \frac{2^{n}}{n+1}
$$

Combining both bounds, we get that

$$
\frac{2^{n}}{n+1} \leq\binom{ n}{n / 2}<2^{n}
$$

Let's plug in $n=200$, and calculate the number of digits to see how close these bounds.

$$
27.80 \approx 200 \cdot \log 2-\log 201 \leq \log \binom{n}{n / 2}<200 \cdot \log 2 \approx 30.10
$$

Can we get a better approximation?
Yes, with Stirling's formula. (homework)

Concentration

- We know that the maximum of $\binom{n}{k}$ is obtained when $k=n / 2$. From the graph, you can see that, as you move further from the middle, the value of the function drops rapidly.
- Since we consider even n, we let $2 m=n$. One way to quantify how fast the values drop is to think about the ratio

$$
\binom{2 m}{m-t} /\binom{2 m}{m}
$$

- In fact, it is known that

$$
\binom{2 m}{m-t} /\binom{2 m}{m} \approx e^{-t^{2} / m}
$$

- We will use our basic tools to obtain weaker bounds.

How close is the approximation?

The estimation $e^{-t^{2} / m}$ is extremely close as shown in the figure below, where the gray bars are the actual value of $\binom{2 m}{m-t} /\binom{2 m}{m}$ and the red line is $e^{-t^{2} / m}$.

The actual values

Because dealing with numbers less than 1 with logarithms is error-prone, we will work on the reciprocal. Let's try to calculate the ratio

$$
\begin{aligned}
\binom{2 m}{m} /\binom{2 m}{m-t} & =\frac{(2 m)!}{m!m!} \times \frac{(2 m-m+t)!(m-t)!}{(2 m)!} \\
& =\frac{(m+t)(m+t-1) \cdots(m+1)}{m(m-1)(m-2) \cdots(m-t+1)}
\end{aligned}
$$

We can use the same logarithm trick. We have that the log of the ratio is

$$
\ln \left(\frac{m+t}{m}\right)+\ln \left(\frac{m+t-1}{m-1}\right)+\cdots+\ln \left(\frac{m+1}{m-t+1} .\right)
$$

Then we can apply the bounds we have for $\ln x$:

$$
\frac{x-1}{x} \leq \ln x \leq x-1
$$

The upper bound on the reciprocal

Each term in the sum is in this form $\ln ((m-i) /(m+t-i))$.
Applying the upper bound, we get
$\ln \left(\frac{m+t-i}{m-i}\right) \leq \frac{m+t-i}{m-i}-1=\frac{m+t-i-m+i}{m-i}=\frac{t}{m-i}$.

Let's sum them up to get

$$
\begin{aligned}
\ln \left(\frac{m+t}{m}\right) & +\ln \left(\frac{m+t-1}{m-1}\right)+\cdots+\ln \left(\frac{m+1}{m-t+1} .\right) \\
& \leq \frac{t}{m}+\frac{t}{m-1}+\cdots+\frac{t}{m-t+1} \\
& \leq \frac{t}{m-t+1}+\frac{t}{m-t+1}+\cdots+\frac{t}{m-t+1} \\
& =\frac{t^{2}}{m-t+1} .
\end{aligned}
$$

This implies that

$$
\ln \left(\frac{(m+t)(m+t-1) \cdots(m+1)}{m(m-1)(m-2) \cdots(m-t+1)}\right) \leq \frac{t^{2}}{m-t+1}
$$

i.e.,

$$
\begin{aligned}
\binom{2 m}{m} /\binom{2 m}{m-t} & =\left(\frac{(m+t)(m+t-1) \cdots(m+1)}{m(m-1)(m-2) \cdots(m-t+1)}\right) \\
& \leq e^{t^{2} /(m-t+1)}
\end{aligned}
$$

Taking the reciprocal, we get

$$
e^{-t^{2} /(m-t+1)} \leq\binom{ 2 m}{m-t} /\binom{2 m}{m}
$$

Upper bounds

Using the same approach, we can show that

$$
\binom{2 m}{m-t} /\binom{2 m}{m} \leq e^{-t^{2} /(m+t)}
$$

Thus, we derived the estimates:

$$
e^{-t^{2} /(m-t+1)} \leq\binom{ 2 m}{m-t} /\binom{2 m}{m} \leq e^{-t^{2} /(m+t)}
$$

which is fairly close the the estimate of $e^{-t^{2} / m}$.

How fast?

- Let's return to the question on how fast do the values of the binomial coefficients decrease as you move further from the middle. Let's use the better estimate $\binom{2 m}{m-t} /\binom{2 m}{m} \approx e^{-t^{2} / m}$.
- Given a constant C, we want to estimate the value of t such that $\binom{2 m}{m-t}$ is less than $\binom{2 m}{m} / C$. (E.g., we can set $C=2$ to see when the value drops by 50%.) Therefore, we want to find t such that

$$
1 / C \geq\binom{ 2 m}{m-t} /\binom{2 m}{m} \approx e^{-t^{2} / m}
$$

Taking the logs, we get

$$
\ln 1 / C=-\ln C \geq \ln \binom{2 m}{m-t} /\binom{2 m}{m} \approx-t^{2} / m
$$

This is true when

$$
t \geq \sqrt{m \ln C}
$$

What does this means?

As an example, let $m=20$ and $C=2$. We know that when t is approximately $\sqrt{20 \cdot \ln 2}=3.723$ the value of $\binom{2 m}{m-t}$ drops by 50%.

