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The sock problem

I have n pairs of socks. Each pair is different from the other
pair. How many socks do I have to pick out to be sure that
I have at least one matching pair.



The Pigeonhole Principle

The answer of the previous question seems obvious. But it appears
to be very useful in numerous cases. It is called the pigeonhole
principle.

The pigeonhole principle

If we put n + 1 objects into n boxes, at least one box gets
more than one objects.



Example

Assume that nobody is taller than 250 cm. In a group of 251
people, there are at least two people whose heights differ by
at most 1cm.



Students with the same birthday1

▶ It is quite often that you find people with the same birthday.

▶ Since there is at most 366 days in a year, the pigeonhole
principle states that if you have 367 people is a room, there is
at least one pair with the same birthday.

▶ But that’s the worst case scenario, as it is more common to
find people with the same birthday. (In the next class, we will
try to see if there is a pair of students in the class with the
same birthday.)

▶ So, let’s think about the probability that there are two
students with the same birthday in a room with 40 students.

1This section follows section 2.5 in [LPV].



A simple case

▶ Let’s start with 2 people in the room.

▶ Notes: While we have not defined properly what probabilities

mean, we can count the number of all possibilities and the number

of cases that we are interested in, and then calculate probability as

the ratio between the two. E.g., if there are 50 possible outcomes

and 30 of them are the ones we are interested in, the probability is

0.6. (Note that we assume that every outcome is equally likely.)

▶ How many possible birthdays can two people have?
▶ Since each person has 366 choices, and the first person and

the second person can choose independently, the number is
366 · 366.

▶ How many possible ways can they share the same birthday?
▶ Since the first person has 366 choices, and the second person

has to choose the same day, there are only 366 ways.

▶ Thus, the probability is 366
3662

= 0.0027, very unlikely.



3 people

▶ Let’s consider 3 people.
▶ How many possible birthdays can 3 people have?

▶ Since each person has 366 choices, and each person can
choose independently, the number is 366 · 366 · 366 = 3663.

▶ How many possible ways can at least two of them share the
same birthday?
▶ There are many cases.
▶ So let’s think about the case when everyone do not share any

birthdays.
▶ The first person has 366 choices. The second one has

366− 1 = 365 choices. The third one has 366− 2 = 364
choices. Thus, the number of ways they do not share any
birthdays is 366 · 365 · 364.

▶ Notice that this is the number of ordered subsets.

▶ Thus, the probability that they do not share birthdays is
366·365·364

3663
= 0.9918. Thus the probability that two of them

share a birthday is 1− 0.9918 = 0.0082.



40 people
▶ Let’s extend our previous argument to the case with 40 people.
▶ How many possible birthdays can 40 people have?

▶ 36640.

▶ How many possible ways that they do not sure any birthdays?
▶ This is the number of ordered subsets with 40 elements of a

366-set.
▶ Thus, there are 366 · 365 · 364 · · · 327 ways.

▶ Thus, the probability that they do not share birthdays is

366 · 365 · 364 · · · 327
36640

.

▶ Umm... how small is it?

▶ Again you can use a computer to compute the exact value of
this quantity. For example, you may want to use Wolfram
Alpha.

▶ Anyway, we will try to estimate it using basic mathematical
tools.



General case: n days k people

▶ Let’s continue on the general case. When we have k people
and a year contains n days, the probability that no two people
share the same birthday is

n · (n− 1) · (n− 2) · · · (n− k + 1)

nk
.

▶ If this number is very close to 0, then it is very unlikely that
no two people share the same birthday, i.e., it is very likely
that there exists two people with the same birthday.



A few tweaks

▶ Dealing with small numbers is sometimes troublesome. (The
reason will be more apparent later when we start introducing
the tools.) So let’s consider the reciprocal instead:

nk

n · (n− 1) · (n− 2) · · · (n− k + 1)
.

▶ The top term looks easy to deal with; the bottom one does
not. Let’s break up the product:(n

n

)
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▶ If you look closely at this product, you can see that each term
is at least one. In the beginning, the terms are very close to
one and they get larger at the end.



The logarithms

▶ There is a nice tool that you can turn multiplications to
additions: logarithms. So let’s try to take the logarithms; we
get
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▶ The terms do not look that much better. But there’s a nice
fact about the natural logarithms.



lnx: the upper bound

Fact:
lnx ≤ x− 1

This fact can be proved with elementary calculus. But it is fairly
clear if you plot the functions lnx and x− 1.



lnx: the lower bound

We know that
lnx ≤ x− 1

If we use the fact that ln 1
x = − lnx, we can obtain the lower

bound.
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1
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Let’s conclude by stating the lemma:

Lemma 1
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The lower bound
Let’s look at each term in the sum: ln
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The upper bound
Again, let’s look at each term in the sum: ln

(
n

n−j

)
. Using the

upper bound in Lemma 1, we get that
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Both

Using the derived upper and lower bounds, we get

e
k(k−1)

2n ≤ nk

n(n− 1)(n− 2) · · · (n− k + 1)
≤ e

k(k−1)
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Let’s plug in n = 366 and k = 40:

8.42 ≤ 36640

366 · 365 · · · 327
≤ 10.86.

So the probability that we get no two people with the same
birthday is between 1/8.42 ≈ 0.118 and 1/10.86 ≈ 0.092. So we
have high chance of finding two students with the same birthday.
This is pretty close as the actual value is 0.1094.


