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Quick recap

We have proved many useful facts.
▶ The number of subsets of a set with n elements is 2n. In fact,

we know 3 proofs of this fact:
▶ We count the number of ways one can choose a subset.
▶ We provide a bijection between subsets and binary strings.
▶ We prove the fact by induction.

▶ For a set with n elements, the number of its permutations is
n!.



This lecture’s goals1

▶ Consider set {1, 2, 3, 4, 5}. How many subsets with 3 elements
does this set have?

▶ There are 10 subsets with 3 elements: {1, 2, 3}, {1, 2, 4},
{1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 4, 5},
{2, 4, 5}, {3, 4, 5}.

▶ In this lecture, we shall find out how to count these subsets.

Abbreviations: We shall call a set with n elements as an
n-set. We shall call a subset with k elements as a k-subset.

▶ We will also discuss the inclusion-exclusion priciples.

1This lecture mostly follows [LPV].



Ordered subsets

In general, elements in a given set is unordered. I.e., sets {1, 2, 3}
and {3, 1, 2} are the same set.
However, sometimes, it is useful to treat sets as ordered.
For example, for set {1, 2, 3}, there are 6 ordered subsets with 2
elements: {1, 2}, {1, 3}, {2, 1}, {2, 3}, {3, 1}, {3, 2}.



Example: runners

Question: There are 10 runners for a given competition.
There are 3 awards: 1st price, 2nd price and 3rd price. In
how many possible ways these 3 awards can be given? (No
runner can get more than one award.)

We can use the argument we used to derive the number of
permutations here. We consider the process for selecting the
winners.

▶ First, we pick the 1st price winner: there are 10 choices.

▶ For any 1st price winner, there are 9 choices to choose the
2nd price winner.

▶ For any 1st and 2nd price winners, there are 8 choices for the
3rd winner.

▶ Therefore, we conclude that the number of ways is 10 · 9 · 8.



Example: runners (another look)
We can arrive at the same answer by a different way of counting.
▶ Let’s count all possible running results: there are 10! results.

(I.e., each running result is a permutation.)
▶ 10! is too many for our answer. Why?

▶ For a particular selection of 3 top winners, how many possible
running results have exactly these 3 top winners?
▶ The number of running results is the number of permutation

of the other 7 non-winning runners; thus, there are 7! of them.

▶ We can think of a process of choosing a permutation as
having two big steps: (1) pick 3 top winners, then (2) pick
the rest of runners. This provide a different way to count the
number of permutations.

▶ Let X be the set of ordered subsets with 3 elements of an
10-set. We then have |X| × 7! = 10!, because they count the
same objects. Solving this yields

|X| = 10!

7!
= 10 · 9 · 8.



General answers: numbers of ordered subsets

Using the same arguments (either one), we have this theorem.

Theorem 1
The number of ordered subsets with k elements of an n-set is

n · (n− 1) · · · (n− k + 1) =
n!

(n− k)!
.



How big is 100! ?

▶ With computers, we may be able to answer the exact long
number. But mathematicians usually enjoy a “quick” estimate
just to have a rough idea on how things are.2

▶ How can we start? When we want to get an estimate, we
usually start by finding an upper bound and a lower bound
for the quantity. As the names suggest, the upper bound for x
is a quantity that is not smaller than x, and the lower bound
for x is a quantity that is not larger than x (maybe under
some condition).

▶ Let’s think about n!.
▶ The first lower bound that comes to mind for n! is 1n = 1.
▶ Can we get a better lower bound? (Here, better lower bounds

should be closer to the actual value.) How about 2n? Is it a
lower bound? How about 3n or 5n? Are they lower bounds of
n!?

2This section on estimation follows section 1.4 of [LPV].



Bounds for n!

Recall that n! = 1 · 2 · 3 · · ·n. Since all its factor, except the first
one is at least 2, we have that

2n−1 ≤ n!.

Similarly, since all factors of n! is at most n, we have that

n! ≤ nn.

A slightly better upper bound is nn−1 because we can, again,
ignore 1.

Are they any good?
n 2n−1 n! nn−1

1 1 1 1
2 2 2 2
3 4 6 9
4 8 24 64
10 512 3, 628, 800 1, 000, 000, 000



A better bound?

Let’s consider n! again, but for simplicity, let’s consider only the
case when n is an even number:

1 · 2 · 3 · · · (n/2− 1) · (n/2) · (n/2 + 1) · · ·n

To get a better lower bound, we may move our cutting point from
2 to, say, n/2. Note that at least n/2 factors are at least n/2.
Thus,

n! = 1 · 2 · · ·n
≥ 1 · 1 · · · 1︸ ︷︷ ︸

n/2

× (n/2) · · · (n/2)︸ ︷︷ ︸
n/2

= (n/2)n/2 =
√

(n/2)n.



Better?

n 2n−1
√

(n/2)n n! nn−1

1 1 - 1 1
2 2 1 2 2
3 4 - 6 9
4 8 4 24 64
6 32 27 720 7, 776
10 512 3, 125 3, 628, 800 1, 000, 000, 000
12 2, 048 46, 656 479, 001, 600 743, 008, 370, 688

OK. A bit better.



Stirling’s formula

An even better estimate for n! exists.

Theorem 2 (Stirling’s formula)

n! ∼
(
n
e

)n√
2πn.

When we write a(n) ∼ b(n), we mean that a(n)
b(n) → 1 as n → ∞.

With Stirling’s formula, We can use a calculator to estimate the
number of digits for 100!. The estimate for 100! is

(100/e)100 ·
√
200π

Thus, the number of digits is its logarithm, in base 10, i.e.,

log
(
(100/e)100 ·

√
200π

)
= 100 log(100/e)+log(200π) ≈ 157.9696.

Note that the correct answer is 158 digits.



Another example

▶ Consider the sum 1 + 2 + · · ·+ n.

▶ While know that it is n(n+1)/2, we can get a very easy upper
bound by noting that each term in the sum is at most n; thus,

1 + 2 + ·+ n ≤ n+ n+ · · ·+ n︸ ︷︷ ︸
n terms

= n× n = n2

▶ This upper bound of n2 is very good as the gaps between the
upper bounds and the actual values will not be larger than 2,
as n2

n(n+1)/2 < 2.



The number of subsets

Theorem: The number of k-subsets of an n-set is

n · (n− 1) · (n− 2) · · · (n− k + 1)

k!
=

n!

(n− k)!k!
.

Proof.
Consider the following process for choosing an ordered subsets with k
elements of an n-set. First, we choose a k-subset, then we permute it.
Let B be the number of k-subsets. For each subset that we choose in the
first step, the second step has k! choices. Therefore, we can choose an
ordered subset in B · k! possible ways. From the previous discussion, we
know that

B · k! = n · (n− 1) · · · (n− k + 1).

Therefore, the number of k-subsets is

n · (n− 1) · (n− 2) · · · (n− k + 1)

k!
=

n!

(n− k)!k!
,

as required.



Binomial coefficients

The number of k-subsets of an n-set is very useful. Hence, there is
a notation for it, i.e., (

n

k

)
=

n!

(n− k)!k!
,

(which reads “n choose k”). These numbers are called binomial
coefficients.

Note that

▶
(
n
n

)
= 1 (why?),

▶
(
n
0

)
= 1 (why?), and,

▶ when k > n,
(
n
k

)
= 0.



Properties (1)

Theorem: (
n

k

)
=

(
n

n− k

)
.



Properties (2)
Theorem: When n, k > 0, then(

n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
.



Properties (3)
Theorem: When n, k > 0, then(

n

0

)
+

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

n

)
= 2n.


