01204211 Discrete Mathematics
 Lecture 4c: Mathematical Induction 3

Jittat Fakcharoenphol

August 2, 2022

Review: Mathematical Induction

Suppose that you want to prove that property $P(n)$ is true for every natural number n.

Suppose that we can prove the following two facts:
Base case: $P(1)$
Inductive step: For any $k \geq 1, P(k) \Rightarrow P(k+1)$
The Principle of Mathematical Induction states that $P(n)$ is true for every natural number n.

The assumption $P(k)$ in the inductive step is usually referred to as the Induction Hypothesis.

The Induction Hypothesis

Theorem 1
For any integer $n \geq 1, \frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{n^{2}}<2$.
Proof.
The statement $P(n)$ that we want to prove is
$" \frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{n^{2}}<2$ ".
Case case: For $n=1$, the statement is true because $1<2$.
Inductive step: For $k \geq 1$, let's assume $P(k)$ and we prove that $P(k+1)$ is true.
The induction hypothesis is: $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{k^{2}}<2$.
We want to show $P(k+1)$, i.e.,
$\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{k^{2}}+\frac{1}{(k+1)^{2}}<2$.
Then...

Strengtening the Induction Hypothesis (1)

- Is the assumption

$$
\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{k^{2}}<2
$$

"strong" enough to prove

$$
\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{k^{2}}+\frac{1}{(k+1)^{2}}<2 ?
$$

Why?

- To prove $P(k+1)$, we need a "gap" between the LHS and 2, so that we can add $1 /(k+1)$ without blowing up the RHS.

Strengtening the Induction Hypothesis (2)

- Let's see a few values of the sum:
- $1 / 1=1$.
- $1 / 1+1 / 4=1.25$.
- $1 / 1+1 / 4+1 / 9 \approx 1.361$.
- $1 / 1+1 / 4+1 / 9+1 / 16 \approx 1.4236$.
- $1 / 1+1 / 4+1 / 9+1 / 16+1 / 25 \approx 1.4636$.

Yes, there is a gap. But how large?

- We need the gap to be large enough to insert $1 /(k+1)^{2}$.
- After a "mysterious" moment, we observe that

$$
\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{n^{2}} \leq 2-\frac{1}{n}
$$

Strengtening the Induction Hypothesis (3)

Theorem 2
For any integer $n \geq 1, \frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{n^{2}} \leq 2-\frac{1}{n}$.
Proof.
(... the beginning is left out ...)

Inductive step: For $k \geq 1$, assume that $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\cdots+\frac{1}{k^{2}} \leq 2-\frac{1}{k}$.
Adding $1 /(k+1)^{2}$ on both sides, we get

$$
\frac{1}{1^{2}}+\frac{1}{2^{2}}+\cdots+\frac{1}{k^{2}}+\frac{1}{(k+1)^{2}} \leq 2-\frac{1}{k}+\frac{1}{(k+1)^{2}}=2-\left(\frac{1}{k}-\frac{1}{(k+1)^{2}}\right) .
$$

Since $1 / k-1 /(k+1)=1 /(k(k+1))$, we have that

$$
1 /(k+1)=1 / k-1 /(k(k+1))<1 / k-1 /(k+1)^{2} .
$$

Therefore, we conclude that

$$
\frac{1}{1^{2}}+\frac{1}{2^{2}}+\cdots+\frac{1}{k^{2}}+\frac{1}{(k+1)^{2}} \leq 2-\left(\frac{1}{k}-\frac{1}{(k+1)^{2}}\right) \leq 2-\frac{1}{k+1},
$$

as required.

A Lesson learned

- Is a stronger statement easier to prove?
- In this case, the statement is indeed stronger, but the induction hypothesis gets stronger as well. Sometimes, this works out nicely.

