01204211 Discrete Mathematics
 Lecture 4b: Mathematical Induction 2

Jittat Fakcharoenphol

August 2, 2022

Review: Mathematical Induction

Suppose that you want to prove that property $P(n)$ is true for every natural number n.

Suppose that we can prove the following two facts:
Base case: $P(1)$
Inductive step: For any $k \geq 1, P(k) \Rightarrow P(k+1)$
The Principle of Mathematical Induction states that $P(n)$ is true for every natural number n.

The assumption $P(k)$ in the inductive step is usually referred to as the Induction Hypothesis.

Example 1

Theorem: For every natural number n,
$\sum_{i=1}^{n} i^{2}=\frac{n}{6}(n+1)(2 n+1)$
Proof: We prove by induction. The property that we want to prove $P(n)$ is " $\sum_{i=1}^{n} i^{2}=\frac{n}{6}(n+1)(2 n+1)$."

Base case: We can plug in $n=1$ to check that $P(1)$ is true: $1^{2}=\frac{1}{6}(1+1)(2 \cdot 1+1)$.

Inductive step: We assume that $P(k)$ is true for $k \geq 1$ and show that $P(k+1)$ is true.

We first assume the Induction Hypothesis $P(k)$:
$\sum_{i=1}^{k} i^{2}=\frac{k}{6}(k+1)(2 k+1)$
(continue on the next page)

Example 1 (cont.)

Let's show $P(k+1)$. We write $\sum_{i=1}^{k+1} i^{2}=\left(\sum_{i=1}^{k} i^{2}\right)+(k+1)^{2}$.
Using the Induction Hypothesis, we know that this is equal to

$$
\begin{aligned}
(k / 6)(k+1)(2 k+1)+(k+1)^{2} & =\frac{(k+1)}{6}(k(2 k+1)+6(k+1)) \\
& =\frac{(k+1)}{6}\left(2 k^{2}+7 k+6\right) \\
& =\frac{(k+1)}{6}((k+1)+1)(2(k+1)+1) .
\end{aligned}
$$

This implies $P(k+1)$ as required.
From the Principle of Mathematical Induction, this implies that $P(n)$ is true for every natural number n.

Not an example (1)

Theorem 1
For any set of cows, all cows have the same color.
Proof.
We prove by induction on the size n of the set of cows.
Base case: For $n=1$, clearly for any set of a single cow, every cow in the set has the same color.
Inductive step: Suppose that for every set of size k of cows, all cows in the set have the same color.
We will show that every set of size $k+1$ of cows, all cows in this set have the same color.

Not an example (2)

Inductive step (cont.): Consider set A of $k+1$ cows.

Because we have established that the base case and the inductive step is true, we can conclude that for any set of cows, all cows have the same color.

Not an example (3)

Clearly the following theorem cannot be true.

Theorem 2
For any set of cows, all cows have the same color.

What is wrong with its proof based on mathematical induction?

Unused facts

- Let's informally think about how proving $P(1)$ and $P(k) \Rightarrow P(k+1)$ for all $k \geq 1$ implies that $P(n)$ is true for all natural number n.
- One may notice that when we prove a statement $P(n)$ for all natural number n by induction, during the inductive step where we want to show $P(k+1)$ from $P(k)$, we usually have that $P(1), P(2), \ldots, P(k)$ is true at hands as well.
- Then why don't we use them as well?

Strong Mathematical Induction

Strong Induction

Suppose that you want to prove that property $P(n)$ is true for every natural number n.

Suppose that we can prove the following two facts: Base case: $P(1)$
Inductive step: For any $k \geq 1$,

$$
P(1) \wedge P(2) \wedge \cdots \wedge P(k) \Rightarrow P(k+1)
$$

Then $P(n)$ is true for every natural number n.

Example 2

Theorem: For any integer $n \geq 4$, one can use only 2 -baht coins and 3 -baht coins to obtain exactly n baht.

Proof: We prove by strong induction on n.
Base cases: For $n=4$, we can use two 2 -baht coins. For $n=5$, we can use one 2-baht coin and one 3 -baht coin.

Inductive step: Assume that for $k \geq 5$, we can obtain exactly ℓ baht, for $4 \leq \ell \leq k$, using only 2 -baht and 3 -baht coins. We will show how to obtain a set of $k+1$ baht.
Since $k \geq 5$, we have that $k-1 \geq 4$. Therefore from the Induction Hypothesis, we can use only 2-baht coins and 3-baht coins to form a set of coins of total value $k-1$ baht. With one additional 2-baht coin, we can obtain a set of value $(k-1)+2=k+1$ baht, as required.

From the Principle of Strong Mathematical Induction, we conclude that the theorem is true.

Is strong induction more powerful?

- Can we prove the previous theorem without using the strong induction? Yes, you can (homework).
- In fact, if you can prove that $P(n)$ is true for all natural number n with strong induction, you can always prove it with mathematical induction.
- Hint: Let $Q(n)=P(1) \wedge P(2) \wedge \cdots \wedge P(n)$.

