01204211 Discrete Mathematics
 Lecture 4a: Mathematical Induction 1

Jittat Fakcharoenphol

July 17, 2021

Mathematical Induction

- In this lecture, we will focus on how to prove properties on natural numbers.
- For example, we may want to prove that for any integer $n \geq 1$,

$$
\sum_{i=1}^{n} i=n(n+1) / 2
$$

or for any integer $n \geq 1$,

$$
\sum_{i=1}^{n} i^{2}=\frac{n}{6}(n+1)(2 n+1)
$$

or "We can pay any integer amount $x \geq 4$ baht with 2-baht coins and 5-baht coins."

A review of the summation notation (by examples)

- $\sum_{i=1}^{10} i=1+2+\cdots+10$.
(reads "sum from $i=1$ to 10 of i " or "sum of i from $i=1$ to 10")
- $\sum_{i=7}^{9}\left(i^{2}+i\right)=\left(7^{2}+7\right)+\left(8^{2}+8\right)+\left(9^{2}+9\right)$.
(reads "sum from $i=7$ to 9 of $i^{2}+i^{\prime}$ or "sum of $i^{2}+i$ from $i=7$ to $9^{\prime \prime}$)
- The range of the index may be sets. For example, let $A=\{1,2,4,15\}$, we have that $\sum_{i \in A} i^{2}=1^{2}+2^{2}+4^{2}+15^{2}$.
- What is $\sum_{i=5}^{2} i$? Note that in this case, the range is empty. This sum is called an empty sum. By convention, we define it to be zero.

Informal arguments (1)

- Let's try to check that $\sum_{i=1}^{n} i=n(n+1) / 2$, for any integer $n \geq 1$, by experimentation.
- Try $n=1$: LHS $^{1}: 1$, RHS $^{2}: 1(1+1) / 2=1$, OK
- Try $n=2$: LHS: $1+2=3$, RHS: $2(2+1) / 2=3$, OK
- Try $n=3:$ LHS: $1+2+3=6$, RHS: $3(3+1) / 2=6$, OK
- Try ...
- With this trying-all approach, we can't actually prove this statement.

[^0]
Informal arguments (2)

- Our goal is to show that $\sum_{i=1}^{n} i=n(n+1) / 2$, for any integer $n \geq 1$.
- Try $n=2$: LHS: $1+2=3$, RHS: $2(2+1) / 2=3$.
- Try $n=3$: LHS: $1+2+3$, RHS: $3(3+1) / 2$
- If we compare these two lines, we can see that

$$
\begin{aligned}
1+2+3 & =(1+2)+3 \\
& =2(2+1) / 2+3 \quad(*) \\
& =2(2+1) / 2+(2+1) \\
& =2(2+1) / 2+2 \cdot(2+1) / 2 \\
& =(2+2)(2+1) / 2=(3+1)(3) / 2
\end{aligned}
$$

which is equal to $3(3+1) / 2$.

- Line $\left(^{*}\right)$ is important here. That is because we use the fact that the statement is true when $n=2$ there.

Informal arguments (3)

- Goal: show that $\sum_{i=1}^{n} i=n(n+1) / 2$, for any integer $n \geq 1$.
- What we have just done? We show that the statement is true when $n=3$ if it is true when $n=2$.
- Let's try to make a more general argument.
- Assume that the statement is true for $n=k$. I.e.,

$$
\sum_{i=1}^{k} i=k(k+1) / 2 .
$$

- Can we show that, with this assumption, the statement is true for $n=k+1$? I.e., can we show that

$$
\sum_{i=1}^{k+1} i=(k+1)((k+1)+1) / 2 ?
$$

Informal arguments (4)

Let's try...
Assumption: $\sum_{i=1}^{k} i=k(k+1) / 2$.
Goal: $\sum_{i=1}^{k+1} i=(k+1)((k+1)+1) / 2$.

$$
\begin{aligned}
\sum_{i=1}^{k+1} i & =\left(\sum_{i=1}^{k} i\right)+(k+1) \\
& =k(k+1) / 2+(k+1) \\
& =k(k+1) / 2+2 \cdot(k+1) / 2 \\
& =(k+2)(k+1) / 2 \\
& =(k+1)((k+1)+1) / 2
\end{aligned}
$$

as required.

Informal arguments (5)

We have all the ingredients required to prove this statement:
For integer $n \geq 1, \sum_{i=1}^{n} i=n \cdot(n+1) / 2$.

Let $P(n) \equiv " \sum_{i=1}^{n} i=n \cdot(n+1) / 2 "$.
The statement we want to prove becomes:
For any natural number $n, P(n)$.

We have shown:

1. $P(1)$ (by experimentation)
2. $P(k) \Rightarrow P(k+1)$ for any integer $k \geq 1$.

What do these two statements imply?

Informal arguments (6)

We have:

1. $P(1)$ (by experimentation)
2. $P(k) \Rightarrow P(k+1)$ for any integer $k \geq 1$.

What do these two statements imply?
$P(1)$ (1st statement itself)
$\Rightarrow P(2)($ from 2 nd statement, let $k=1)$
$\Rightarrow P(3)$ (from 2nd statement, let $k=2$)
$\Rightarrow P(4)$ (from 2nd statement, let $k=3$)
$\Rightarrow P(5) \Rightarrow P(6) \Rightarrow P(7) \ldots$

Informally, these chain of reasoning will eventually reach any natural number n. Therefore, we can conclude that $P(n)$ for any natural number n.
We have just shown the statement with mathematical induction.

Mathematical Induction

Suppose that you want to prove that property $P(n)$ is true for every natural number n.

Suppose that we can prove the following two facts:
Base case: $P(1)$
Inductive step: For any $k \geq 1, P(k) \Rightarrow P(k+1)$
The Principle of Mathematical Induction states that $P(n)$ is true for every natural number n.

The assumption $P(k)$ in the inductive step is usually referred to as the Induction Hypothesis.

Let's re-write the proof again

Theorem 1
For every natural number $n, \sum_{i=1}^{n} i=n(n+1) / 2$
Proof:We prove by induction. The property that we want to prove $P(n)$ is " $\sum_{i=1}^{n} i=n(n+1) / 2$."
Base case: We can plug in $n=1$ to check that $P(1)$ is true: $1=1(1+1) / 2$.
Inductive step: We assume that $P(k)$ is true for $k \geq 1$ and show that $P(k+1)$ is true.
Let's state the Induction Hypothesis $P(k): \sum_{i=1}^{k} i=k(k+1) / 2$.
Let's show $P(k+1)$. We write $\sum_{i=1}^{k+1} i=\left(\sum_{i=1}^{k} i\right)+(k+1)$. Using the Induction Hypothesis, we know that this is equal to

$$
\begin{aligned}
k(k+1) / 2+(k+1) & =k(k+1) / 2+2 \cdot(k+1) \\
& =(k+2)(k+1) / 2
\end{aligned}
$$

which implies $P(k+1)$ as required.
From the Principle of Mathematical Induction, this implies that $P(n)$ is true for every natural number n.

[^0]: ${ }^{1}$ LHS $=$ left hand side
 ${ }^{2}$ RHS $=$ right hand side

