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Proof techniques1

In this lecture, we will focus on two other proof techniques.

I Proofs by contradiction

I Proofs by cases

1This lecture mostly follows Berkeley CS70 lecture notes.



Proofs by contradiction

We want to prove that proposition P is true. To do so, we first
assume that P is false, and show that this logically leads to a
contradiction. This means that it is impossible for P to be false;
hence, P has to be true. This is called a proof by contradiction or
reductio ad absurdum.

Direct proofs

Theorem:
P

Proof.
We use prove by contradiction.
Assume ¬P .
... (then show that R and ¬R follows from ¬P )
This is a contradiction. Therefore, P must be true.



Example 1 (1)

Theorem 1√
2 is irrational.

Proof.
We prove by contradiction. Assume that the theorem is false, i.e.,
assume that

√
2 is rational.

Therefore, there exists a pair of positive integers a and b such that√
2 = a/b. Let’s choose the pair a and b such that b is minimum.

In this case, a and b share no common factors.
Let’s square both terms. We get 2 = a2/b2, or

a2 = 2b2.

(cont. in next slide)



Example 1 (2)

Proof. (cont.)

By definition, we know that a2 is an even number. From a theorem
from last time, we know that a must also be an even number.
Again by definition, there exists integer k such that a = 2k. We
then obtain

2b2 = (2k)2 = 4k2,

i.e., b2 = 2k2. This implies that b2 is an even number. Again, this
means that b must be an even number.

[quick check] Do you see that we are arriving at a contradiction
here?

(cont. in the next slide)



Example 1 (3)

Proof. (cont.)

Since a and b are both even numbers, they share 2 as a common
factor.
This contradicts the fact that we choose the pair a and b that
share no common factor.
Therefore,

√
2 must be irrational.



Proofs by cases

I The last proof technique that we shall discuss is closely
related to proofs by exhaustion we tried before.

I Sometimes when we want to prove a statement, there are
many possible cases. Also, we might not know which cases
are true.

I We might still be able to prove the statement if we can show
that the statement is true in every case.



Example 2 (1)

Theorem 2
Suppose that I have 3 pairs of socks: one pair in gray, one pair in
white, and one pair in black. If I pick any 4 socks, I will have at
least one pair of the same color.

If we want to prove by exhaustion, we will have to consider all 15
cases.

Proof.
Let’s split the process of picking 4 socks into 2 steps. First, pick 3
socks, then pick the last sock.
After we pick the first 3 socks. There are 2 possible cases: either I
have a pair of socks with the same color, or I do not have such a
pair. We shall consider each case separately.
(cont. in the next slide)



Example 2 (1)

Proof. (cont.)

I Case 1: I have a pair of socks with the same color.
In this case, the theorem is true.

I Case 2: I do not have a pair of socks with the same color.
In this case, since I have 3 colors and 3 socks, I must have one
sock for each color. Now, after we pick the last sock, whatever
color the last one is, we have a color-matching sock in our
first 3 socks. Therefore, the theorem is also true in this case.

Since these two cases cover all possibilities, we conclude that the
theorem is true.



Proofs by cases in propositional logic

In propositional logic, the following describe a proof by cases.

P ∨Q ∨R
P ⇒ S
Q ⇒ S
R ⇒ S

S

Sometimes, when we have 2 cases, we also see:

P ∨ ¬P
P ⇒ S
¬P ⇒ S

S

Note that we can leave P ∨ ¬P out, because it is always true.


