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Review (1)

▶ A proposition is a statement which is either true or false.

▶ We can use variables to stand for propositions, e.g., P =
“today is Tuesday”.

▶ We can use connectives to combine variables to get
propositional forms.
▶ Conjunction: P ∧Q (“P and Q”),
▶ Disjunction: P ∨Q (“P or Q”), and
▶ Negation: ¬P (“not P”)
▶ Implication: P ⇒ Q (“P implies Q”, “if P , then Q”,

“P , only if Q”)
▶ Equivalence: P ⇔ Q (“P if and only if Q”)



Review (2): Testing primes

Consider the following code.

Algorithm CheckPrime2(n): // Input: an integer n

if n <= 1:

return False

let s = square root of n

i = 2

while i <= s:

if n is divisible by i:

return False

i = i + 1

return True

How fast can it run? Note that s =
√
n; therefore, it takes time

approximately proportional to
√
n to run.

Ok, it should be faster. But is it correct?



The goals

▶ Let’s recall what we are trying to do.

Original goal: To show that Algorithm CheckPrime2

is correct.

Current (sub) goal: Consider a positive composite n
and its positive divisor a, where a >

√
n. Let b = n/a.

We want to show that 2 ≤ b ≤
√
n.



The (sub) goal

▶ Current (sub) goal: Consider a positive composite n and its

positive divisor a, where a >
√
n. Let b = n/a. We want to show

that 2 ≤ b ≤
√
n.

▶ We can be more specific about what values of n and b that
we want to consider.

Revised statement

For all positive composite integer n, and for every divisor
a of n such that

√
n < a < n,

2 ≤ b ≤
√
n,

where b = n/a.

▶ Note that this revised statement is now “quantified,” that is,
every variable in the statement has specific scope. Now the
statement is either true or false.



Predicates

▶ In many cases, the statement we are interested in contains
variables.

▶ For example, “x is even,” “p is prime,” or “s is a student.”
▶ As we previously did with propositions, we can use variables to

represent these statements. E.g.,
▶ let E(x) ≡ “x is even”,
▶ let P (y) ≡ “y is prime, and
▶ let S(w) ≡ “w is a student.

We call E(x), P (y), and S(w) predicates. (You can think of
predicates as statements that may be true of false depending
on the values of its variables.)



Quantifiers (1)

▶ As we note before, these predicates are not propositions. But
if we know the values of their variables, then they becomes
propositions. For example, if we let x = 5, then E(5) is a
proposition which is false. Also, P (7) is true.

▶ Since the truth values of predicates depend on the
assignments of their variables, we can put quantifiers to
specify the scopes of these variables and how to interprete the
truth values of the predicates over these values.



Quantifiers (2): universal quantifiers

▶ Let A = {2, 4, 6, 8}.
▶ Note that E(2), E(4), E(6), and E(8) are true, i.e., E(x) is

true for every x ∈ A.
In this case, we say that the following proposition is true:

(∀x ∈ A)E(x).

▶ The quantifier ∀ is called a universal quantifier. (We usually
pronounce “for all x”, or “for every x.”)



Quantifiers (3): existential quantifiers

▶ Again, let A = {2, 4, 6, 8}.
▶ Note that P (2) is true. This means that P (y) is true for some

y ∈ A.
In this case, we say that the following proposition is true:

(∃y ∈ A)P (y).

▶ The quantifier ∃ is called an existential quantifier. (We
usually pronounce “for some x”, or “there exists x.”)

When the universe A is clear, we can leave it out and
just write ∀xE(x) or ∃yP (y).



The main goal

▶ Let’s try to be more specific about our main goal:

Algorithm CheckPrime2 is correct.

▶ Can we re-write this statement so that the input/output of
the algorithm are explicit?

▶ Note that the set of its input n is an integer. Thus, we are
interested in every n ∈ Z, where Z denote the set of all
integers.

▶ Let’s rewrite the goal as:

∀n ∈ Z, C(n) ⇔ P (n),

where C(n) ≡ “CheckPrime2(n) returns True”, and
P (n) ≡ “n is a prime.”



Quantified propositions with more than one variables

Let our universe be integers (Z). Which of the following
statements is true?

▶ ∀x∀y(x = y)

▶ ∀x∃y(x = y)

▶ ∃x∀y(x = y)

▶ ∃x∃y(x = y)

When you have many quantifiers, we can interprete the statement
by nesting the quantifiers. E.g,

∃x∀yP (x, y) ≡ ∃x(∀y(P (x, y))).

∀y∃xP (x, y) ≡ ∀y(∃x(P (x, y))).

Also note that usually, ∃x∀yP (x, y) ̸≡ ∀y∃xP (x, y).



Quick check 4

We will consider the universe to be “everything”. Consider the
following statements. Define appropriate predicates and rewrite
them using the defined predicates and quantifiers. (Note: the
predicates may have more than one variables.)

▶ Every human must die.

▶ Some animal eats other animals.

▶ If a student works hard, that student will be successful.

▶ Everyone has someone that care about him or her.



Quick check 5

▶ Let’s consider the current subgoal. (Note that in this version,
variable b is replaced with n/a.)

Another revised statement

For all positive composite integer n, and for every divisor
a of n such that

√
n < a < n,

2 ≤ n/a ≤
√
n.

▶ Define all required predicates and describe a quantified
proposition equivalent to the revised statement above.



Negations of quantified propositions (1)

Let consider a set of positive integers Z+ as our universe. Let
predicate P (x) ≡ “x is a prime number.”
Consider this proposition

(∀x ∈ Z+)P (x).

How can we show that this is false?
When showing that a universally quantified proposition is false, we
need to show “one” counter example. In this case, since P (4) is
false, ∀xP (x) is false.
This way of disproving a statement is equivalent to showing that

(∃x)(¬P (x)).



Negations of quantified propositions (2)

Let consider a set of positive integers Z+ as our universe. Let
predicate Q(x) ≡ “if x > 2, then x2 ≤ 2x.”
Consider this proposition

(∃x ∈ Z+)Q(x).

How can we show that this is false?
When showing that an existential quantified proposition is false, we
need to show that Q(x) is false for every possible values of x. In
this case, since x2 = x · x > 2 · x for every x > 2, we have that
(∃x)Q(x) is false.
This way of disproving a statement is equivalent to showing that

(∀x)(¬Q(x)).



Negations of quantified propositions (3)

Thus, the following equivalences:

▶ ¬(∀xP (x)) ≡ ∃x(¬P (x))

▶ ¬(∃xP (x)) ≡ ∀x(¬P (x))



Quick check 6

Consider the following statements with the quantified propositions
that you have written previously. Write down their negations in
quantified propositional forms, and then translate them back to
English sentences.

▶ Every human must die.

▶ Some animal eats other animals.

▶ If a student works hard, that student will be successful.

▶ Everyone has someone that care about him or her.


