01204211 Discrete Mathematics
 Lecture 1b: Implications and equivalences

Jittat Fakcharoenphol

June 28, 2022

This lecture covers:

- More connectives: implications and equivalences

Review (1)

- A proposition is a statement which is either true or false.
- We can use variables to stand for propositions, e.g., $P=$ "today is Tuesday".
- We can use connectives to combine variables to get propositional forms.
- Conjunction: $P \wedge Q$ (" P and Q "),
- Disjunction: $P \vee Q$ (" P or Q "), and
- Negation: $\neg P($ (n ot P " $)$

Review (2)

To represents values of propositional forms, we usually use truth tables.

And/Or/Not

P	Q	$P \wedge Q$	$P \vee Q$	$\neg P$
T	T	T	T	F
T	F	F	T	
F	T	F	T	T
F	F	F	F	

Quick check 1

As we said before, the truth value of propositional forms may not depend on the values of its variables. As you can see in this exercise.
Use a truth table to find the values of (1) $P \wedge \neg P$ and (2) $P \vee \neg P$.

And/Or/Not

P	$\neg P$	$P \wedge \neg P$	$P \vee \neg P$
T	F	F	T
F	T	F	T

Note that $P \wedge \neg P$ is always false and $P \vee \neg P$ is always true. A propositional form which is always true regardless of the truth values of its variables is called a tautology. On the other hand, a propositional form which is always false regardless of the truth values of its variables is called a contradiction.

Implications ${ }^{1}$

Given P and Q, an implication

$$
P \Rightarrow Q
$$

stands for "if P, then Q ". This is a very important propositional form.
It states that "when P is true, Q must be true". Let's try to fill in its truth table:

Implications

P	Q	$P \Rightarrow Q$
T	T	T
T	F	F
F	T	T
F	F	T

[^0]
What?

- Yes, when P is false, $P \Rightarrow Q$ is always true no matter what truth value of Q is.
- We say that in this case, the statement $P \Rightarrow Q$ is vacuously true.
- You might feel a bit uncomfortable about this, because in most natural languages, when we say that if P, then Q we sometimes mean something more than that in the logical expression " $P \Rightarrow Q$."

One explanation

- But let's look closely at what it means when we say that: if P is true, Q must be true.
- Note that this statement does not say anything about the case when P is false, i.e., it only considers the case when P is true.
- Therefore, having that $P \Rightarrow Q$ is true is OK with the case that (1) Q is false when P is false, and (2) Q is true when P is false.
- This is an example when mathematical language is "stricter" than natural language.

Noticing if-then

We can write "if P, then Q " for $P \Rightarrow Q$, but there are other ways to say this. E.g., we can write (1) Q if P, (2) P only if Q, or (3) when P, then Q.

Quick check 2

For each of these statements, define propositional variables representing each proposition inside the statement and write the proposition form of the statement.

- If you do not have enough sleep, you will feel dizzy during class.
- If you eat a lot and you do not have enough exercise, you will get fat.
- You can get A from this course, only if you work fairly hard.

Only-if

Let P be "you get A from this course."
Let Q be "you work fairly hard."
Let R be "You can get A from this course, only if you work fairly hard."
Let's think about the truth values of R.
Only if you work fairly hard.

P	Q	R
T	T	
T	F	
F	T	
F	F	

Thus, R should be logically equivalent to $P \Rightarrow Q$. (We write $R \equiv P \Rightarrow Q$ in this case.)

If and only if: (\Leftrightarrow)

Given P and Q, we denote by

$$
P \Leftrightarrow Q
$$

the statement " P if and only if Q." It is logically equivalent to

$$
(P \Leftarrow Q) \wedge(P \Rightarrow Q)
$$

i.e., $P \Leftrightarrow Q \equiv(P \Leftarrow Q) \wedge(P \Rightarrow Q)$.

Let's fill in its truth table.

P	Q	$P \Rightarrow Q$	$P \Leftarrow Q$	$P \Leftrightarrow Q$
T	T			
T	F			
F	T			
F	F			

An implication and its friends

When you have two propositions

- $P=$ "I own a cell phone", and
- $Q=$ "I bring a cell phone to class".

We have

- an implication $P \Rightarrow Q \equiv$
"If I own a cell phone, I'll bring it to class",
- its converse $Q \Rightarrow P \equiv$
"If I bring a cell phone to class, I own it", and
- its contrapositive $\neg Q \Rightarrow \neg P \equiv$
"If I do not bring a cell phone to class, I do not own one".

Quick check 3

Let's consider the following truth table:

P	Q	$P \Rightarrow Q$	$Q \Rightarrow P$	$\neg Q \Rightarrow \neg P$
T	T			
T	F			
F	T			
F	F			

Do you notice any equivalence?
Right, $P \Rightarrow Q \equiv \neg Q \Rightarrow \neg P$.

[^0]: ${ }^{1}$ Materials in this lecture are mostly from Berkeley CS70's lecture notes.

