
01204211 Discrete Mathematics
Lecture 1: Introduction

Jittat Fakcharoenphol

June 28, 2022



What is this course about?

This is a math class.
But, what is mathematics?
Ah... that’s a philosopical question.
IMHO, mathematics is a mean to communicate precise ideas.



It’s like learning a new language

▶ Do you remember the time when you start learning English?

▶ There are a few things you have to learn and get used to.

▶ They might not make so much sense in the beginning, but
over time, you will get comfortable with how the language is
used.

▶ As your knowledge of the language gets better, everything
becomes more natural. Learning a new language sometimes
expands your view of the world.

▶ I hope it is also true with this course.



The goals of this course

There are two goals:

▶ To learn how to make mathematical arguments.

▶ To learn various fundamental mathematical concepts that are
very useful in computer science.



Why should we learn how to prove? (1)

Look at this program.

if a > b:

return a

else:

return b

The author claims that this program takes two variables a and b
and returns the larger one.
Do you believe the author of the code? Why?



Finding the maximum value. (1)

Now look at this program.

if a > b:

if a > c:

return a

else:

return c

else:

if c > b:

return c

else:

return b

The author claims that this program takes three variables a, b and
c and returns the largest one.
Do you believe the author of the code? Why?



Finding the maximum value. (2)

Finally, look at this program.

// Input: array A with n elements: A[0],...,A[n-1]

m = 0

for i = 0, 1, ..., n-1:

if A[i] > m:

m = A[i]

return m

The author claims that this program takes an array A with n
elements and returns the maximum element.
Do you believe the author of the code? Why?
Can we try to test the code with all possible inputs?



Finding the maximum value. (3)

Let’s try again.

// Input: array A with n elements: A[0],...,A[n-1]

m = A[0]

for i = 1, 2, ..., n-1:

if A[i] > m:

m = A[i]

return m

Do you believe the author of the code? Why?
Can we try to test the code with all possible inputs?



Another example: testing primes (1)

A prime is a natural number greater than 1 that has no positive
divisors other 1 and itself. E.g., 2,3,5,7,11 are primes.

Algorithm CheckPrime(n): // Input: an integer n

if n <= 1:

return False

i = 2

while i <= n-1:

if n is divisible by i:

return False

i = i + 1

return True

The code above checks if n is a prime number. How fast can it
run?
Note that if n is a prime number, the for-loop repeats for n− 2
times. Thus, the running time is approximately proportional to n.
Can we do better?



Another example: testing primes (2)

Consider the following code.

Algorithm CheckPrime2(n): // Input: an integer n

if n <= 1:

return False

let s = square root of n

i = 2

while i <= s:

if n is divisible by i:

return False

i = i + 1

return True

How fast can it run? Note that s =
√
n; therefore, it takes time

approximately proportional to
√
n to run.

Ok, it should be faster. But is it correct?



Informal arguments (1)

▶ Let’s try to argue the Algorithm CheckPrime2 works correctly.

▶ Note that if n is a prime number, the algorithm answers
correctly. (Why?)

▶ Therefore, let’s consider the case when n is not prime (i.e., n
is a composite).

▶ If that’s the case, n has some positive divisor which is not 1 or
n. Let’s call this number a.

▶ Now, if 2 ≤ a ≤
√
n, at some point during the execution of

the algorithm, i = a and i should divides n; thus the
algorithm correctly returns False.

▶ Are we done?



Informal arguments (2)

▶ Recall that we are left with the case that (1) n is not prime
and (2) its positive divisor a is larger than

√
n.

▶ Let b = n/a. Since n and a are positive integers and a divides
n, b is also a positive integer.

▶ Note that if we can argue that 2 ≤ b ≤
√
n, we are done.

(why?)

▶ How can we do that?



The goals

▶ Let’s take a break and look back at what we are trying to do.

Original goal: To show that Algorithm CheckPrime2

is correct.

Current (sub) goal: Consider a positive composite n
and its positive divisor a, where a >

√
n. Let b = n/a.

We want to show that 2 ≤ b ≤
√
n.

▶ Before we continue, I’d like to add a bit of formalism to our
thinking process.



The main goal

▶ Original goal: To show that Algorithm CheckPrime2 is
correct.

▶ Let’s focus on the statement we want to argue for:

“Algorithm CheckPrime2 is correct.”

▶ Note that this statement can either be “true” or “false.” If we
can demonstrate, using logical/mathematical arguments that
this statement is true, we can say that we prove the
statement.



The (sub) goal

▶ Current (sub) goal: Consider a positive composite n and its
positive divisor a, where a >

√
n. Let b = n/a. We want to

show that 2 ≤ b ≤
√
n.

▶ Let’s focus only on the statement we want to argue for:

2 ≤ b ≤
√
n.

▶ If we only look at this statement, it is unclear if the statement
is true or false because there are variables b and n in the
statement. It can be true in some case and it can be false in
some case depending on the values of n and b.

▶ Are we doom? Not really. The statement above is not
precisely the statement we want to prove.



The (sub) goal (second try)

▶ Current (sub) goal: Consider a positive composite n and its

positive divisor a, where a >
√
n. Let b = n/a. We want to show

that 2 ≤ b ≤
√
n.

▶ We can be more specific about what values of n and b that
we want to consider.

Revised statement

For all positive composite integer n, and for every divisor
a of n such that

√
n < a < n,

2 ≤ b ≤
√
n,

where b = n/a.

▶ Note that this revised statement is now “quantified,” that is,
every variable in the statement has specific scope. Now the
statement is either true or false.



Propositions1

▶ A proposition is a statement which is either true or false.

▶ It is our basic unit of mathematical “facts”.
▶ Examples:

▶ Algorithm CheckPrime2 is correct.
▶ 102 = 90.
▶

√
2 is irrational.

▶ Examples of statements which are not propositions (why?):
▶ x > 10.
▶ 1 + 2 + · · ·+ 10.
▶ This algorithm is fast.
▶ Run, run quickly.

1This section follows the expositions in Berkeley’s CS70 lecture notes.



Combining propositions

▶ We usually use a variable to refer to a proposition. For
example, we may use P to stand for “it rains” or Q to stand
for “the road is wet.”

▶ The truth value of a variable is the truth value of the
proposition it stands for.

▶ Many propositions can be combined to get a complex
statement using logical operators.

▶ For example, we can join P and Q with “and” (denoted by
“∧”) and get

P ∧Q,

which stands for “it rains and the road is wet”.

▶ An expression P ∧Q is an example of propositional forms.
The logical value of a propositional form “usually” depends on
the truth value of its variables.



Connectives: “and”, “or”, “not”

Given propositions P and Q, we can use connectives to form more
complex propositions:

▶ Conjunction: P ∧Q (“P and Q”),
(True when both P and Q are true)

▶ Disjunction: P ∨Q (“P or Q”),
(True when at least one of P and Q is true)

▶ Negation: ¬P (“not P”)
(True only when P is false)

If P stands for “today is Tuesday” and Q stands for “dogs are
animals”, then

▶ P ∧Q stands for “today is Tuesday and dogs are animals”,

▶ P ∨Q stands for “today is Tuesday or dogs are animals”, and

▶ ¬P stands for “today is not Tuesday”.



Truth tables

To represents values of propositional forms, we usually use truth
tables.

And/Or/Not

P Q P ∧Q P ∨Q ¬P
T T T T F
T F F T
F T F T T
F F F F



Quick check 1

For each of these statements, define propositional variables
representing each proposition inside the statement and write the
proposition form of the statement.

▶ All prime numbers are larger than 0 and all natural numbers is
at least one.

▶ You are smart or you won’t be taking this class.



Next lecture...

▶ We will discuss other ways to join two propositions, i.e.,
implications (⇒) and equivalences (⇔).

▶ We will look at two forms of quantifiers: universal quantifiers
and existential quantifiers.


